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in the volume, even introducing a number 
of new taxa.

Bulman’s work on the graptolites and 
their taxonomy in the two previous Treatise 
volumes is neither the only one nor the first 
attempt at a general overview of graptolites. 
However, most general treatments did not 
attain the influence and acceptance in the 
international scientific community, either 
due to the language in which they were 
published or the time of publication. Hall 
(1868) and Frech (1897) provided an under-
standing of graptolite research during their 
times and achieved important and valuable 
insights. General overviews by Dawydoff 
(1948), Waterlot (1953), Münch (1952), 
Mu and Lee (1960), and Obut (1957, 1964) 
had less impact due to the language barriers 
(published in French, German, Chinese, and 
Russian, respectively), but nevertheless they 
were important in shaping the opinions of 
generations of researchers.

SCOPE OF THE VOLUME

This volume is aimed at providing the 
most complete and up-to-date information 
on the fossil Hemichordata, their taxonomy, 
and their use in the geological sciences. The 
inclusion of not only the Pterobranchia 
(Graptolithina), but also the Enteropneusta 
shows our increased knowledge of the rela-
tionships of this fascinating fossil group with 
extant groups of organisms. This approach 
connects the fossil graptolites with their 
closest relatives, largely known from extant 
organisms.
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INTRODUCTION
This Second Revision of the Part V Treatise 

on Invertebrate Paleontology, dealing with 
the phylum Hemichordata, is a consider-
ably extended version of the Graptolite 
Treatises of Bulman (1955, 1970), which 
primarily covered the Graptolithina, at the 
time interpreted as an extinct class of the 
Hemichordata. With the recognition of 
the Graptolithina as fossil members of the 
Pterobranchia and the identification of the 
benthic colonial pterobranch Rhabdopleura 
as an extant graptolite (Mitchell & others, 
2013), the focus in this volume is extended 
to include the record of fossil Hemichor-
data and to also examine the soft-body 
anatomy in more detail. Zooidal anatomy is 
important for the interpretation of the fossil 
graptolites and their life style and points to 
the importance of modern biology in under-
standing the fossil record.

The two editions of Bulman’s Treatise 
(1955, 1970) have been the standard for 
graptolite research for seven decades, but 
their precursor in the Handbuch der Paläo-
zoologie (Bulman, 1938) seems to be nearly 
forgotten and is difficult to obtain. This 
volume could be regarded as the first version 
of the Graptolite Treatise, because it covers 
in a similar manner all the main aspects of 
graptolite taxonomy and its understanding 
at the time of publication and was obviously 
the basic source for the later versions. Unfor-
tunately, it was published at the wrong time 
and in the wrong country. Bulman (1938) 
established all the basic taxonomic concepts 
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Graptolites have been used successfully 
in the understanding of lithostratigraphic 
successions, unraveling structural complexi-
ties in geology and, thus, are important 
biological objects enabling numerous geolog-
ical interpretations, as detailed in Chapter 9 
(Maletz & VandenBerg, 2021). Lapworth 
(1878) first used graptolites to decipher 
the tectonic complexities in the succession 
of the Moffat Series, a milestone in grap-
tolite research (Fortey, 1993; Hamilton, 
2001) and a first hint on the importance of 
graptolite research to applied geology. Grap-
tolite fusellum has been used to determine 
temperature and burial histories of Paleozoic 
sediments (e.g., Goodarzi & Norford, 
1985). Graptolite research, thus, goes far 
beyond the identification of taxa and the 
relative dating of successions that included 
graptolites as index fossils. It is not just a 
discipline for taxonomists and fossil collec-
tors; the geological application of graptolites 
is still developing and modern data collection 
and database interpretations may infuse 
new life into graptolite research. In recent 
years, paleodiversity studies using graptolite 
faunas have become the focus of research on 
extinction and origination intervals in Earth’s 
history (e.g., Crampton & others, 2020).

The Enteropneusta, unfortunately, have 
been neglected in the past because so few 
fossil ones were recognized, and even the 
extant enteropneusts were rarely investi-
gated in much detail. Only through the 
renewed interest in the Burgess Shale biota 
and their preservation, fossil Enteropneusta 
have gained more interest, and therefore 
new fossil taxa have been studied and 
described, including ones that are tubi-
colous (e.g., Caron, Conway Morris, & 
Cameron, 2013; Nanglu, Conway Morris, 
& Cameron, 2016; Cameron, 2018) and 
one with tentaculate arms (Nanglu, Caron, 
& Cameron, 2020), two characteristics that 
were previously regarded as restricted to the 
Pterobranchia. 

FOSSIL AND EXTANT 
MEMBERS OF 

HEMICHORDATA

The recognition of fossil Hemichor-
data is quite difficult as these organisms in 
general are soft-bodied and rarely leave any 
trace of their existence (Maletz, 2020). 
Thus, the fossil record is relatively poor. Of 
the three extant groups of Hemichordata 
(Enteropneusta, Pterobranchia, Plancto-

Fig. 1. Examples of the Hemichordata. 1, Torquaratorid enteropneust with fecal string (Holland & others, 2005, 
fig. 3E); 2, Expansograptus hirundo (Salter, 1863), flattened tubarium, PMO 234064, Tøyen Shale, Oslo region, 
Norway (new); 3, Rhabdopleura compacta Hincks, 1880, tubarium with zooids (Cavers, 2005, fig. 1.1); 4, Cepha-
lodiscus planitectus Miyamoto, Nishikawa, & Namikawa, 2020, ventral view of zooid (Miyamoto, Nishikawa, & 

Namikawa, 2020, fig. 2C); 5, Planctosphaera pelagica Spengel, 1932 (Hart, Miller, & Madin, 1994, fig. 1B).
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sphaeroidea), only the tube-building Ptero-
branchia (Fig. 1.2–1.4) are common in 
the fossil record due to the preservability 
of their organic housing, the tubarium 
(Fig. 1.2).The Enteropneusta (Fig. 1.1) 
possess a fossil record reaching back into 
the Middle Cambrian (Cameron, 2018), 
but the Planctosphaeroidea (Fig. 1.5) are 
only known from a few larvae (e.g., Spengel 
1932; Hyman, 1959; Hart, Miller, & 
Madin, 1994).

All extant Hemichordata share a tripartite 
body plan of their worm-like soft-bodied 
organization as a characteristic feature. 
Modern taxa investigated with DNA anal-
ysis indicate a phylogenetic position of the 
Hemichordata as a sister group to the echi-
noderms (e.g., Halanych, 1996; Cannon 
& others, 2009; Li & others, 2019) (Fig. 
2). The extant Pterobranchia may have 
evolved from an enteropneust-like ancestor 
through a reduction in size and morpholog-
ical complexity, a colonial or pseudocolonial 
life style, and development of the colony 
zooids through asexual budding (Cameron, 
Garey, & Swalla, 2000). Interestingly, a 
miniaturization also occurs in enteropneusts 
(e.g., Meioglossus Worsaae & others, 2012).

Phylum HEMICHORDATA 
Bateson, 1885

[Hemichordata Bateson, 1885, p. 111; nom. transl. ex class 
Hemichordata Bateson, 1885, p. 111, Hyman, 1959, p. 74]
[=Klasse Helminthomorpha Grobben, 1908, p. 505, non 
Helminthomorpha Pocock, 1887 (Diplopoda, millipedes);  

=subphylum Stomochordata Dawydoff, 1948, p. 367]

Hemichordate synapomorphies include 
a tripartite body; a muscular-secretory-
locomotory preoral organ (enteropneust 
proboscis or pterobranch cephalic shield) 
that encloses a heart–kidney coelomic 
complex, including a stomochord; a collar 
with paired valved mesocoel ducts and pores; 
and a trunk that includes a ventral post-
anal extension of the metacoels (entero-
pneust juvenile tail or pterobranch stalk). 
Cambrian, Terreneuvian (Fortunian)–Holo-
cene (extant): worldwide.

Bateson (1885) introduced the term 
Hemichordata for the Enteropneusta, but it 
was Fowler (1892, p. 132) who revised the 
Hemichordata to also include the colonial 
Pterobranchia. The status of the Plancto-
sphaeroidea in the Hemichordata is still 
uncertain (see p. 6). The Hemichordata are 
comparable to the Helminthomorpha of 
Grobben (1908, p. 505), who included the 

Fig. 2. Phylogenetic understanding of the Hemichordata. Taxon names with * indicate taxa known also from fossils 
or only from fossil material (new).
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Enteropneusta and Pterobranchia. Spengel 
(1932, p. 26) included Planctosphaera as a 
third class in the Helminthomorpha. The 
Helminthomorpha Grobben, 1908 has 
commonly been used in German litera-
ture and may easily be confused with the 
Helminthomorpha Pocock, 1887, a clade 
of millipedes.

The Hemichordata range in length from 
less than one millimeter (Worsaae & others, 
2012) to more than two meters. Of the 
living hemichordates, the Enteropneusta 
are the most well known members. For a 
detailed look at Enteropneusta, see Chapter 
2 (Cameron, 2018). They are benthic marine 
worms that are distributed from the shallow 
intertidal zone to the deep sea and appear 
not to be limited by temperature barriers. 
They are usually infaunal elements, but 
deep-water enteropneusts include epibenthic 
demersal drifters (Osborn & others, 2012). 
The enteropneust Saxipendium coronatum 
Woodwick & Sensenbaugh, 1985 is known 
to congregate on rock surfaces near hydro-
thermal vents.

Uncertainty about the relationships of 
the Hemichordata has been present since 
the first enteropneust was discovered in 
1821 and was thought to be an atypical 
holothurian (Eschscholtz, 1825). Hyman 
(1959) provided a thorough historical 
treatment of early hemichordate classifica-
tions. Kowalewsky (1866) provided the 
first anatomical study of an acorn worm 
including the discovery of pharyngeal open-
ings that aligned the Enteropneusta with the 
Chordata. Metschnikoff (1869) found that 
the tornaria larva was an enteropneust rather 
than an asteroid larva, adding weight to the 
echinoderm and enteropneust relationship. 
Then, Bateson (1885) placed a subphylum 
Hemichordata in the phylum Chordata 
based on the presence of a notochord, the 
central nervous system, and the gill slits. 
This position was protested by Spengel 
(1893) and subsequently abandoned by the 
German, French, and American treatises 
on invertebrates, namely van der Horst 
(1939), Dawydoff (1948), and Hyman 

(1959). The similarities and close relation-
ship of the hemichordates to the echino-
derms was the predominant view for the 
latter half of the twentieth century, although 
the common ancestor remained contentious. 
On one side, Bather (1900) referred to 
the dipleurula larva, a name introduced by 
Semon (1888), as a common ancestor. The 
larva shared features of the enteropneust 
tornaria or asteroid auricularia. It was soft, 
bilaterally symmetric with a ventral mouth, 
apical organ, ciliated bands, and three pairs 
of coelomic sacs that were arranged on either 
side of the gut (Gislén, 1930), referred to 
as the protocoel, mesocoel, and metacoel. 
The protocoel opened to the exterior by a 
ciliated duct and pore. The hypothesis that 
this dipleurula elongated to become the 
ancestral chordate animal (Garstang, 1928) 
gained acceptance.

Grobben (1923) put forward the hypoth-
esis that the echinoderms are derived from 
the pterobranchs. The ancestor was similar 
to Cephalodiscus M‘Intosh, 1882 in that it 
had five pairs of arms with tentacles. The 
cephalic shield was comparable in posi-
tion to the attachment pit of the crinoid 
and asteroid larvae that was drawn out to 
become a stalk. Most people regarded the 
pterobranchs as more primitive than entero-
pneusts because of their simple nervous 
system. The echinoderms then would have 
evolved by the extension of the protocoel 
(echinoderm hydrocoel) into multiple arms. 
The protocoel opened to the exterior by a 
pore. The digestive tract was comprised of 
an esophagus, stomach, and intestine and 
curved to open into an anus on the anterior 
ventral side. This ancestor metamorphosed 
into an echinoderm with the right protocoel 
and five arms diminished, and the body 
attained a circular disk-like shape. The 
remaining arms radiated in five directions to 
form the echinoderm rays. Jeffries (1986) 
developed a similar calcichordate hypothesis 
whereby the echinoderms and the chordates 
evolved from a pterobranch-like ancestor 
that had fallen over and then elaborated 
one side. The prevailing hypotheses of the 
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twentieth century was that pterobranchs 
were either basal deuterostomes (Gee, 1996; 
Nielsen, Scharf, & Eibye-Jacobsen, 1996) 
or plesiomorphic hemichordates (Hyman, 
1959; Barrington, 1965).

The Gutmann (1981) hypothesis posits 
that the ancestral deuterostome, based on a 
functional-mechanical analysis, was a meta-
meric, coelomate worm-like animal with 
complex body muscles that formed the basis 
of a hydrostatic skeleton. The sequence of 
morphological changes leading to the chor-
date ancestor was, in chronological order, the 
appearance of a notochord, the dorsal hollow 
nerve cord, the post-anal tail, and the bran-
chial basket. This primitive chordate would 
have been most like a lancelet. From here, 
the enteropneusts lost the notochord, dorsal 
nerve cord, and segmented condition and 
developed a muscular burrowing proboscis. 
The collar originated to prevent water from 
exiting the mouth. Pterobranchs then arose 
from this acorn worm by a reduction in the 
branchial basket and an elaboration of the 
collar into arms and tentacles, and finally, 
the appearance of the tubarium. By this 
hypothesis, echinoderms arose from the 
pterobranch-like ancestor by specializing for 
sessile life, developing feeding tentacles and 
losing the branchial basket.

The twenty-first century saw the dawn 
of a new hypothesis, that the common 
ancestor to the deuterostomes was an entero-
pneust-like worm with chordate-like gills 
(Cameron, Garey, & Swalla, 2000). This 
worm hypothesis was further elaborated by 
Cameron (2002b, 2005), who stated that 
the ancestral deuterostome was a benthic 
vermiform organism with a terminal mouth 
and anus and a pharynx perforated with 
gill slits bordered by gill bars of collagen 
used in filter feeding (Cameron, 2002b). 
This organism possessed a simple nerve 
plexus with little sign of regionalization. The 
enteropneust collar cord is not a homologue 
of the chordate dorsal nerve cord. It had a 
cluster of vacuolated cells with myofilaments, 
expanded extracellular matrix, and extracel-
lular spaces developed from the middorsal 

wall of the archenteron that provided the 
foundation for the independent evolution 
of the chordate notochord and enteropneust 
stomochord. Iodotyrosine was produced in 
cells lining the gut, but these cells had not 
yet coalesced into an endostyle. It is not 
known if this animal had trimeric or meta-
meric coeloms, but the ancestor probably 
had well-developed circular and longitudinal 
muscles (Cameron, 2005). On the branch 
to the Ambulacraria, the dipleurula larva 
appeared. The first echinoderm adult was 
bilaterally symmetric (Rahman & others, 
2015) and may have possessed echinoderm-
like ossicles (Cameron & Bishop, 2012) and 
gill slits (e.g., Jaekelocarpus Kolata, Frest & 
Mapes, 1991, see Dominguez, Jacobson, & 
Jeffries, 2002). The first pterobranchs then, 
similarly evolved from an acorn worm-like 
ancestor. 

The discovery of two Cambrian Burgess 
Shale enteropneust fossils that are tubico-
lous (Cameron, 2018), and another with 
arms and tentacles (Nanglu, Caron, & 
Cameron, 2020) suggest that these traits 
originated before the pterobranchs. The 
major innovations of pterobranchs then 
are coloniality and a reduction in size that 
resulted in the loss of the gill skeleton, 
branchiomeric nephridia, and three pairs 
of coelomic diverticula; the perihaemal, 
peripharyngeal, and peribuccal coeloms 
(Cameron, 2005). The hypothesis that 
the ancestor to the deuterostomes was an 
enteropneust-like worm is supported by 
morphological and molecular phylogenetic 
trees (Cameron, 2005; Cannon & others, 
2009), molecular development (Lowe, 
2021), and comparative genomics (Simakov 
& others, 2015). An important caveat to 
this hypothesis, which points to fruitful 
future avenues of research, is the almost total 
absence of pterobranch molecular develop-
mental studies (Sato & others, 2009) and 
the absence of a pterobranch genome.

The preservation of the Hemichordata 
(see Chapter 5; Maletz, 2018) as fossils 
depends strongly on the type of sediments 
in which they are embedded and the 
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environmental conditions in these sediments 
(Maletz, 2020). In general, indications of 
the organic soft-tissue of organisms is only 
preserved under very special conditions 
and can be found in rare Lagerstätten, such 
as the Burgess Shale of British Columbia, 
the Chengjiang fauna of China (Cameron, 
2018) and the Mazon Creek fauna of North 
America (Cameron, 2016). The fossil record 
of the Pterobranchia is extensive, as is seen 
by the common occurrence of graptolite 
tubaria in Paleozoic sediments, but does 
not include any identifiable organically 
preserved zooids (Maletz, 2020; Ramírez-
Guerrero & Cameron, 2021).

Class PLANCTOSPHAEROIDEA 
van der Horst, 1936

[Planctosphaeroidea van der Horst, 1936, p. 612]

The species  Planctosphaera pelagica 
Spengel, 1932 is based on a large, spherical 
larva that may exceed 25 mm in diameter 
and is the sole member of the monotypic 
class Planktospharoidea van der Horst, 
1936. The surface is laced with paired 
and ramified food grooves lined by two 
continuous ciliated bands used in filter 
feeding (Hart, Miller, & Madin, 1994). 
The viscera are clearly visible through the 
jelly interior and include a mouth that is 
located internal to paired stomodeal canals, 
followed by an esophagus, stomach, and 
intestine with a terminal anus. It has a trian-
gular shaped protocoel with a posterior 
extending duct and pore. A muscle strand 
connects the protocoel with an apical nerve 
plate, and from the other two corners paired 
horns extend anteriorly along the stomach. 
Paired mesocoels and metacoels are located 
on either side of the intestine. Except for 
the paired stomodeal canals to the mouth 
and the horns of the protocoel, all of these 
features are present in enteropneust tornaria. 
Other apomorphies include a ventral depres-
sion that extends into the larva as paired 
boot-shaped diverticula positioned on either 
side of the intestine and posterior stomach.
Planctosphaera Spengel, 1932, p. 4 [*P. pelagica; OD]. 

Hypertrophied, spherical tornaria-type larva with 

bilateral symmetry; gut system U-shaped; mouth 
and anus close together on ventral side; surface 
covered by a complex ciliated band; internal organs 
occupy only a small part of the whole sphere. 
Extant: Atlantic and Pacific Oceans (no known 
fossil record).——Fig. 1.5. *P. pelagica Spengel, 
Bermuda, western Atlantic Ocean (Hart, Miller, & 
Madin, 1994, fig. 1B).

The taxonomic and phylogenetic affinities 
of Planctosphaera pelagica are not clear but 
its morphology is like that of enteropneust 
tornaria (Spengel, 1932; van der Horst, 
1936) and its deep-water collection locali-
ties suggest that it may be a hypertrophied 
tornaria that has not undergone metamor-
phosis due to absence of a settlement cue 
(Hadfield & Young, 1983). Hadfield 
(1975) and Halanych, Tassia, and Cannon 
(2018) regarded the taxon as the giant larva 
of a deep-water enteropneust, thus, probably 
of the Torquaratoridae.

A few specimens of Planctosphaera pelagica 
were collected from deep-water trawls in 
the Bay of Biscay (Spengel, 1932; Damas 
& Stiasny, 1961) and other regions of the 
Atlantic Ocean (see Scheltema, 1970, fig. 
1), but it is also known from shallow water 
adjacent to Bermuda (Hart, Miller, & 
Nadin, 1994). Specimens from the Pacific 
Ocean are from a depth of 75–500 m near 
O′ahu in the Hawaian islands (Hadfield & 
Young, 1983). Scheltema (1970) suggested 
this was a warm-water species due to the 
biogeographic distribution of the few known 
specimens. Hadfield and Young (1983) 
suggested a worldwide distribution of 
this organism probably originating from 
abyssal depths. Hart, Miller, and Madin 
(1994) described suspension feeding of a 
single living larva from surface waters near 
Bermuda in the western Atlantic Ocean.
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